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AbstractÐThe ¯uid displacement associated with the injection and subsequent translation of high Rey-
nolds number bubbles in a thin gap is examined experimentally, and compared with a theoretical model
based on a two-dimensional inviscid ¯ow calculation. In the experiments, air bubbles are injected and
rise through an aqueous solution bound in a thin gap. Particular attention is given to the parameter
regime characterised by the steady rectilinear motion of oblate elliptical or elliptical cap bubbles which
transport a closed volume of ¯uid which trails the bubble in the form of a stable primary wake, and by
laminar ¯ow in the suspending ¯uid. The ¯uid displacement is measured by digitally tracking either par-
ticles suspended in the ¯uid, or the distortion of an initially horizontal ¯uid±¯uid interface. While the
¯uid transport associated with the narrow region of viscous in¯uence, or secondary wake, trailing the
bubble is observed to contribute to the total ¯uid displacement over long times, its contribution is mini-
mized by the in¯uence of the channel walls. We thus focus on the ¯uid displacement associated with
the irrotational component of the ¯ow, which is described in terms of two components: a positive
``drift'' component which is localized near the point of crossing, and a negative ``re¯ux'' component
required by continuity in a bounded domain.

The experimental observations con®rm a number of theoretical predictions concerning the ¯uid dis-
placement accompanying high Reynolds number bubble motion. At distances greater than half the
channel width from the point of injection, both the injection-induced displacement and the re¯ux are
spread uniformly across the channel width. The re¯ux amplitude depends on the size of the primary
wake, the drift volume and the channel width. The drift volume does not depend on the detailed shape
of the bubble and wake or on the channel width, but is uniquely set by the cross-sectional area of the
compound body composed of bubble plus wake. The shape of a distorted material surface depends
weakly on the compound body shape, and becomes more peaked as the compound body becomes more
oblate. This indicates that the presence of a primary wake adjoining a bubble will in¯uence the longi-
tudinal dispersion rather than the total drift volume.

The relevance of this study for the analogous three-dimensional problem is discussed, and a heuristic
model of mixing by high Reynolds number bubbles in a bounded domain is developed. The importance
of ¯uid transport in the secondary wake, which was neglected in the theoretical model, is discussed in
detail. # 1998 Published by Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

The transport properties of high Reynolds number bubbles are of interest in a variety of indus-
trial and environmental applications; for example, in boiling convective ¯ows, where vaporiza-
tion near heating elements creates bubbles which may contribute signi®cantly to the total heat
¯ux (Mayinger et al. 1991); in a number of puri®cation and aeration systems, where chemical
transport across the bubble surface is important; in gas ¯uidised beds, where the motion of
voids is remarkably similar to that of high Reynolds number bubbles with zero surface tension
(Davidson and Harrison 1963); in bioreactors, where bubbling serves to aerate the suspended
microorganisms and disperse toxic waste products; in the meltdown phase of nuclear reactor
accidents, where bubbles are produced by the reaction between the molten reactor core and the
concrete containment wall; and in the destrati®cation of lakes and the containment of oil spills
by bubble plumes (Asaeda and Imberger 1993).

A prerequisite to the study of ¯uid transport by an assemblage of bubbles is a thorough
understanding of that associated with the motion of single bubbles. It is particularly important
to be able to characterize the ¯uid transport in terms of the governing parameters; speci®cally,
the form of the bounding geometry, and the properties of the bubble surface and suspending
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¯uid. In order to identify the various mechanisms contributing to the ¯uid transport, one must
have a clear physical picture of the bubble-induced ¯ow.

We are concerned with the parameter regime in which the Reynolds number, Re = Ur/n,
based on the bubble rise speed U, the undeformed bubble radius r and the kinematic viscosity n
of the suspending ¯uid, is su�ciently large that viscous e�ects are con®ned to thin boundary
layers, but su�ciently small that the bubble motion is steady and stable, and the external ¯ow is

everywhere laminar. In this limit, the bubble shape and induced ¯ow are uniquely prescribed by
Re and the Eotvos number S = rgr2/s, which indicates the relative importance of the hydro-

static pressure and the curvature force associated with the surface tension s in the normal stress
balance. Moreover, in this limit, the ¯ow induced by the rising bubbles is to leading order
described by inviscid irrotational ¯ow theory. However, there must also be regions of non-zero

vorticity at the surface of the bubble in order to satisfy the tangential stress boundary condition
at the bubble surface (zero tangential stress for the ideal case of a clean bubble). Vorticity gener-

ated at the bubble surface is advected downstream, giving rise to a secondary wake which
spreads downstream and contributes to a ¯uid transport towards the bubble. Far downstream
of a bubble rising in unbounded ¯ow, the vertical volume ¯ux Q in the secondary wake is re-

lated to the hydrodynamic drag D on the bubble through

D � r U Q �1�
(Batchelor 1967). While the ¯ow upstream of the bubble may be adequately described as inviscid
(Davies and Taylor, 1950), the details of the wake region downstream of the bubble depend

explicitly on the boundary layer structure adjoining the bubble.

Moore (1965) considered the motion of small nearly spherical bubbles (S<<1), and developed
a theoretical model describing the viscous boundary layers on the bubble surface (treated as

free-slip) and in a thin vortical ®lament trailing the bubble corresponding to the secondary
wake. Moore's predictions for the bubble shapes and hydrodynamic drag values have been con-
®rmed by recent experimental studies of millimetre scale air bubbles rising through hyperclean

water (Duineveld 1995; see also Maxworthy et al. 1996). Ryskin and Leal (1984) calculated the
¯ow around deformed bubbles at moderate S, and demonstrated the presence of closed vortical

regions, or ``primary wakes'', adjoining the trailing edge of the bubble at su�ciently large S. At
higher Reynolds numbers, the instability of the primary wake causes a path instability resulting
in a zigzag or helical bubble trajectory (Sa�man 1956; Hartunian and Sears 1957). At still higher

Reynolds and Eotvos numbers, the bubble assumes a spherical cap shape whose wake is ulti-
mately turbulent and path unsteady. Maxworthy (1967) examined the unsteady motion of a

spherical cap air bubble through water, and argued that the turbulent wake trailing the bubble
was open.

A number of experiments have been performed in order to examine high Re bubble motion in
a two-dimensional geometry, and have involved the motion of air bubbles through water bound

in a thin gap. The evolution of the bubble shapes and ¯ow structure with increasing bubble
volume is roughly analogous to the three-dimensional case, and has been detailed by Siekmann

et al. (1974). Lazarek and Littman (1974) measured the pressure ®eld around circular cap
bubbles rising in a narrow channel, and demonstrated that the ¯ow downstream of the bubble
is consistent with Collins' (Collins 1965a) qualitative observations of a vortex pair trailing the

bubble in a stable primary wake, and, moreover, that the ¯ow upstream of the bubble is well
approximated by the irrotational ¯ow around the oval compound body composed of bubble

plus primary wake. Bessler and Littman (1987) demonstrated that even in the case of a fully tur-
bulent wake, there is a closed volume of ¯uid or primary wake trailing a circular cap bubble.

We thus identify three distinct mechanisms of ¯uid transport associated with bubble motion
at high Re. Firstly, there may be transport of a closed volume of ¯uid corresponding to the pri-

mary wake. Secondly, there is the ¯uid displacement associated with the potential ¯ow around
the compound body. Thirdly, there is the transport contributed by the secondary wake. In this

paper, we present the results of an experimental study of bubble motion in a thin gap in which
we focus on the parameter regime characterised by the steady rectilinear motion of bubbles with
stable attached primary wakes and a laminar external ¯ow, and attempt to quantify the relative
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importance of each of these three transport mechanisms. Speci®cally, we observe displacements
associated with the injection and subsequent translation of the bubble and compare them with a
theoretical description based on a two-dimensional inviscid ¯ow model.

Darwin (1953) considered the inviscid ¯uid displacement associated with the translation of
rigid bodies, and described the distortion of an initially horizontal material surface by the verti-
cal translation of a body in an in®nitely long vertical channel. Darwin demonstrated that the
distortion could be characterized by two components: a positive displacement, or ``drift'', which
is con®ned to a region close to the point of crossing; and a negative displacement, or ``re¯ux'',
which is spread uniformly across the channel width (refer to ®gure 1). Darwin's Proposition
relates the drift volume Vd to the body volume V through Vd=CmV, where Cm is the added
mass coe�cient of the body. Continuity requires that the re¯ux volume be equal to the sum of
the body and drift volumes, (1 + Cm)V. Darwin predicted that the re¯ux will be uniformly dis-
tributed across the channel, so that the amplitude of the re¯ux across a two-dimensional channel
of width w is zr=(1 + Cm)V/w. We note that the re¯ux component of the ¯uid displacement
depends explicitly on the size of the container, while the drift component does not.

While a great deal of research has been focussed towards understanding the shapes and rise
speeds of high Re bubbles (see Clift et al. 1978), there have been very few experimental studies
of the associated ¯uid displacement. Weber and Bhaga (1982) considered the ¯uid displacement
associated with three-dimensional bubbles with closed wakes (2<Re<110) rising along the axis
of a cylindrical tube, and pointed out the important contribution of the secondary wake to the
total ¯uid transport. Bataille et al. (1991) examined three-dimensional air bubbles of e�ective di-
ameter 2.5±5.5 mm rising through an interface between two aqueous solutions. They observed
that, as Re increased from 500 to 1300, the ratio of drift to bubble volumes increased from 0.5
(the value anticipated for a spherical bubble on the basis of Darwin's Proposition) to 3.0. No
description of either the bubble shapes, wakes or the form of the bubble motion was provided,
and no explanation for the increase in the ratio of drift to bubble volume with increasing Re
was reported. However, the data compiled in Clift et al. (1978) indicates that in the parameter
regime considered by Bataille et al. (1991), one expects to observe unsteady motion of oblate
ellipsoidal bubbles; consequently, Darwin's description of ¯uid transport by steady bubble
motion is not directly applicable. Finally, neither Weber and Bhaga (1982) nor Bataille et al.

Figure 1. Darwin's model of inviscid ¯uid displacement by an arbitrarily shaped rigid body of volume
V and added mass coe�cient Cm translating in an in®nite channel. The drift occurs in a thin ®lament
drawn up behind the body, and the drift volume (shaded) is Vd=CmV. The re¯ux volume (that between
the two horizontal lines) is required by continuity to be (1 + Cm)V, and is spread uniformly across the
channel width; consequently, the re¯ux amplitude in a channel of width w is given by zr=(1 + Cm)V/w.
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(1991) were able to measure the form of the re¯ux accompanying the bubble motion in their ex-
periments, as its magnitude was too small to be measured in their three-dimensional geometry.

We present an experimental method for considering ¯uid displacement associated with high
Re bubble motion, which involves tracking the distortion of an initially horizontal ¯uid±¯uid
interface by a bubble rising in a thin gap. While experimental studies of bubble motion in a thin
gap of water have been used previously to verify details of the adjustment phase (Walters and
Davidson 1962) and rise speeds (Collins 1965b) predicted by two-dimensional inviscid ¯ow the-
ory, they have yet to be used to examine the associated ¯uid displacement. Our experimental
technique has three signi®cant advantages over those employed in the analogous three-dimen-
sional studies. Firstly, it is possible to accurately resolve the form and magnitude of both the
drift and re¯ux. Secondly, ¯ow visualization was greatly facilitated, and so we were able to
readily observe details of the bubble shape and external ¯ow. Thirdly, it was possible to incline
the channel at an arbitrary angle y relative to the horizontal, and so to adjust the e�ective grav-
ity g siny driving bubble motion. This ¯exibility made it possible to explore a broad range of
parameter space and, in particular, to focus on the desired regime of laminar ¯ow around
bubbles rising steadily with stable primary wakes.

We consider the ¯uid displacement associated with the injection and subsequent translation
of single bubbles in a bounded rectangular channel. In Section 2, we present the governing
equations, and describe the parameter regime to be considered in our experimental study. A
theoretical model of inviscid ¯uid displacement by the injection and translation of a two-
dimensional bubble is presented in Section 3. While the theoretical model may be extended in
order to describe the analogous three-dimensional problem, we focus here on the two-dimen-
sional case in order to facilitate comparison with our experimental study. In Section 4, we
present a detailed account of our experimental study of ¯uid transport by high Re bubbles,
and compare our observations with the predictions of the inviscid ¯ow theory. In Section 5,
we apply our physical picture of ¯uid displacement by high Re bubbles in order to develop a
simple model of mixing by an assemblage of bubbles in a bounded geometry. A number of
results of our study are discussed in the context of ¯uid displacement by three-dimensional
bubble motion in Section 6.

2 . BUBBLE MOTION IN A THIN GAP

Consider a ¯uid of uniform density r and kinematic viscosity n con®ned within a thin channel
of thickness d and width w such that d<w. The bounding plates of the channel are inclined at
an angle y relative to the horizontal. We introduce a Cartesian coordinate system (x,y,z) such
that x and z vary along, respectively, the width and the length of the channel, and y = 0 and
y = d de®ne the upper and lower channel boundaries. A bubble of volume V= pr2d (treated
here as inviscid, zero density ¯uid) is injected at a distance zo from the lower boundary. The
characteristic bubble size r is large relative to the gap thickness, r/d>>1, so that ¯ow induced
within the channel is largely two-dimensional, that is, con®ned to lie within planes parallel to
the channel walls.

As the bubble rises, it rapidly adjusts to an equilibrium shape. In the high Reynolds number
limit, Re>>1, viscous stresses do not contribute appreciably to the normal stress balance at the
bubble surface, and the bubble shape is uniquely prescribed by Re and the Eotvos number
S = rgr2siny/s de®ned in terms of the e�ective gravity component g siny aligned with the direc-
tion of motion. While a variety of bubble shapes were observed in our experimental study, we
focus on the parameter regime in which the bubbles assume an oblate elliptical or elliptical cap
form, and transport a volume of ¯uid EV in a stable closed primary wake (refer to ®gure 2). In
this case, we describe the total ¯uid displacement as that due to the radial injection of a volume
V, and the subsequent steady translation of the oval compound body of volume (1 + E)V com-
posed of bubble plus primary wake.

Nondimensionalizing the Navier±Stokes equations on the basis of a horizontal lengthscale r,
convective timescale r/U, velocity scale U, cross-channel lengthscale d, and dynamic pressure
scale rU2 yields the equations governing incompressible ¯uid motion in the channel:
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Du

Dt
� ÿrpd � �

Ur

�
r

d

�2 @2u

@y2
, r � u � 0, �2�

where we have introduced a dynamic pressure, pd=pÿ rgz siny, and employed the thin gap ap-
proximation, (d/r)2<<1, in order to retain only the dominant viscous term. In the limit of Re(d/
r)2>>1, viscous e�ects are con®ned to thin boundary layers adjoining the channel walls and
bubble surface, and the bulk interior may be treated as inviscid. The horizontal vorticity associ-
ated with the no-slip condition at the rigid walls does not di�use across the gap in a convective
timescale r/U:

DIFFUSION TIME

CONVECTIVE TIME
� d2=�

r=U
� Re

�
d

r

�2

� 1: �3�

The ¯ow pro®le within the gap corresponds closely to the ¯at pro®les observed in pressure-
driven start-up ¯ows. As Re(d/r)241, the bubble-induced ¯uid motion may thus be described
to leading order as two-dimensional inviscid ¯ow:

Du

Dt
� ÿrpd, r � u � 0, �4�

so that the velocity ®eld may be expressed in terms of a potential f through u = Hf. The
motion of bubbles in a thin gap has been considered by Walters and Davidson (1962) in a study
of the adjustment phase of a circular bubble released from rest, and by Collins (1965b) in a
study of the steady translation phase of circular cap bubbles. Both investigators found that the
experimental observations of the bubble motion validated simple theoretical models based on
equation [4] governing two-dimensional inviscid ¯ow.

It is possible to assess the extent to which criterion (3) is satis®ed by the two components of
the ¯ow associated with the bubble injection and translation. Since the velocity ®eld associated
with the injection of a circular bubble of radius r in a time t is given by vuv0r2tÿ1(x2+z2)ÿ1/2,
criterion (3) is satis®ed everywhere within a distance rd2/(nt) of the point of injection. Since the

Figure 2. Theoretical model of inviscid ¯uid displacement by the injection and subsequent steady trans-
lation of a two-dimensional bubble with a stable wake. At time t = 0, a bubble of volume V= pr2 is
injected a distance z0 from the lower boundary. After a rapid adjustment period, the bubble assumes a
steady shape with a stable primary wake of volume EV. The total ¯uid displacement within the channel
is that associated with the injection of a circular bubble of radius r and the subsequent translation of
the elliptical compound body composed of bubble plus primary wake. Darwin's Proposition relates the
drift volume to that of the compound body through the added mass coe�cient of the compound body,

C
0
m=a/b.
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velocity ®eld associated with the steady translation at speed U of a circular body of radius r is
given by vuv0Ur2(x2+z2)ÿ1, criterion (3) is satis®ed during the translation phase everywhere
within a distance Re1/2d of the rising bubble. To summarize, the injection- and translation-
induced ¯ow may be adequately described with two-dimensional inviscid ¯ow theory everywhere
within the bounded channel provided the channel dimension L is such that

L� min

�
Re1=2d,

rd2

�t

�
: �5�

In our experimental study, the injection time was su�ciently short (typically 0.01 seconds)
that the ¯uid motion induced during the injection phase could everywhere be adequately
described by inviscid ¯ow theory. Moreover, in our experiments, typically Re04000,
d00.25 cm and r01 cm, so that Re1/2d was typically 15 bubble radii, which provided an upper
bound for our channel width.

It is also important to recognize that there must be a contribution to the ¯uid transport made
by the secondary wake, which cannot be accounted for on the basis of inviscid ¯ow theory. The
irrotational ¯ow component contributes a permanent distortion to a material surface, while the
¯ow associated with the secondary wake will continue to distort the interface until its in¯uence
is damped out by viscous interaction with the bounding geometry. In the two-dimensional geo-
metry of our experiments, the kinetic energy in the secondary wake will be damped by the chan-
nel walls on a timescale d2/n rather than spreading downstream on a di�usive timescale. Since
the walls act to reduce and eventually suppress the motions in the secondary wake, we do not
attempt to quantify the contribution of the secondary wake to the ¯uid transport, but instead
focus on the contribution made by the irrotational component of the ¯ow.

3. THEORETICAL ANALYSIS OF FLUID DISPLACEMENT

In this section we describe the distortion of an initially horizontal line of marked ¯uid by the
injection of a circular bubble and the subsequent translation of an elliptical compound body
composed of bubble plus primary wake (refer to ®gure 2). We consider the equations governing
two-dimensional inviscid ¯ow, namely Euler's equation [4], and so predict drift and re¯ux
volumes consistent with the application of Darwin's Proposition to the compound body.

The total displacement in the z-direction associated with the bubble-induced ¯ow is de®ned as
z � �1t�0uz dt:
3.1. Displacement due to bubble injection

The injected bubble is assumed to expand radially from a point a distance z0 from the lower
boundary. The associated inviscid ¯ow is calculated by using the distribution of sources required
to satisfy the kinematic boundary conditions on the channel walls. The injection-induced distor-
tion, zi, due to a source in a bounded geometry was calculated by Eames and Duursma (1997),
who showed that far from the point of injection (i.e. (zÿ z0)/r>>1) the ®nal shape of the inter-
face may be expressed in terms of distance x from the centerline as

zi�x�0V

w

�
1� exp

�
ÿ 2p�zÿ z0�

w

�
cos

�
2px
w

��
: �6�

The injection-induced displacement decreases monotonically with distance from the centerline,
and is constant to within 5% provided (zÿ z0)/w>0.5, that is, at distances greater than half the
channel width from the point of injection.

3.2. Displacement due to bubble translation

We assume that, following injection, the bubble undergoes a rapid adjustment to a form
whose elliptical compound body, composed of a bubble of volume V plus a primary wake of
volume EV, may be described as an ellipse with a half-width a, and half-length b (refer to
®gure 2).
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The distortion of the marked surface is calculated as the bubble moves from a distance zÿ z0
below the marked surface, to a distance in®nitely far above it. Eames et al. (1994) showed that
the displacement of a marked ¯uid parcel by the potential velocity ®eld u = (ux,uz) = Hf is in
general given by

The ®rst term in equation [7], zr, corresponds to the negative displacement associated with
re¯ux. When the elliptical bubble is initially far from the marked surface, i.e. (zÿ z0)/a>>1, the
re¯ux may be expressed as (Eames et al. 1994)

zr�x,z�0ÿ pa�a� b�
w

�
1� 2 exp

�
ÿ 2p�zÿ z0�

w

�
cos

�
2px
w

��
: �8�

Re¯ux is critically dependent on both the initial separation of body and interface, and the
channel width w. The kinematic e�ect of the walls is signi®cant even when the channel is very
wide: as w 41, the re¯ux amplitude tends to zero, but the re¯ux volume remains ®nite. The
re¯ux amplitude is constant to within 5% and e�ectively independent of the initial separation of
body and marked interface when (zÿ z0)/w>0.6, which indicates that the characteristic time-
scale over which re¯ux contributes to the total ¯uid displacement is U/w. In the limit of (zÿ z0)/
w 41, corresponding to the case of a bubble approaching from -1, [8] yields Darwin's result
of uniform re¯ux across the channel width.

The second term in equation [7], zd, corresponds to the positive displacement, associated with
¯uid drift. In order to calculate the drift component of the ¯uid displacement associated with a
translating ellipse, we use the velocity potential given by Batchelor (1967):

f�x,z� � U

�
Z� c2

Z

�
sinzÿUx, �9�

where the elliptical coordinates (Z,z) are de®ned through

z�Z,z� � Z
�
1� l2

Z2

�
cos z, x�Z,z� � Z

�
1ÿ l2

Z2

�
sinz, �10�

and the geometrical coe�cients are

c � 1

2
�a� b�, l � 1

2
�a2 ÿ b2�1=2: �11�

The drift component of the ¯uid displacement associated with a translating ellipse may thus
be described by the asymptotic expressions

zd�x�0
pa2�a� b�2

8x3
, x� a,

2a2

a� b
log

� �4�a� b�
x

�
, x� a:

8>>><>>>: �12�

The drift displacement is localized near the point of crossing (with amplitude zd decaying
rapidly as 1/x3 far from the point of crossing), and has a logarithmic singularity at the point of
crossing x = 0. The drift amplitude depends only very weakly on the geometric details of the
bounding container. In particular, the ®nite initial separation of bubble and interface, (zÿ z0),
and the ®nite width of the container w typically alter the drift amplitude by amounts of O(a2/
(zÿ z0)) and O(a3/w2), respectively, relative to that in an unbounded system (Eames et al. 1994).

[7]
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Thus when a2/w2<<1 and a/(zÿ z0)<<1, the contribution of drift to the ¯uid displacement may
be calculated to leading order by considering the deformation of a material surface in an
unbounded system.

Figure 3 illustrates the distortion pro®les associated with translating elliptical bodies with
identical cross-sectional widths but di�erent lengths. The displacement associated with ¯uid drift
is clearly localised, and occurs over a distance characterised by the body width. Note that while
the drift volumes are equal for each case, the ®nal interface shapes are di�erent. In particular,
the peaks are more and less pronounced, respectively, for oblate (a/b>1) and prolate (a/b<1)
elliptical bodies.

In general the ¯uid drift is localised and independent of the details of the bounding geometry.
Conversely, the re¯ux is broadly distributed across the channel width, and has a form which
depends explicitly on both the channel width and the initial distance between the bubble and
interface, zÿ z0. For the sake of comparison with our experimental study, we calculate the de-
formation of a material surface by ®rst calculating the deformation of the material surface in
unbounded ¯ow, which gives the drift contribution, then subtracting the appropriate constant
re¯ux amplitude.

Figure 3. The drift component of the distortion of an initially horizontal material surface by translating
two-dimensional elliptical bodies. The cross-sectional area 2a of the bodies is identical, while the width

to height ratio, a/b, assumes the values 0.3 (solid line), 1.0 (dotted line) and 3.0 (dashed line).
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Finally, it is worth noting that the ¯uid displacement associated with the inviscid component
of the ¯ow occurs much more rapidly than that associated with the transport in the secondary
wake. In particular, the components of ¯uid displacement associated with drift and re¯ux occur
over characteristic timescales of, respectively, a/U and w/U. Conversely, in the absence of vis-
cous interaction with the bounding geometry, the secondary wake will give rise to a constant
volume ¯ux towards the bubble in the far ®eld.

3.3. Drift and re¯ux volumes

If the channel were vertically unbounded, and the bubble approaching from -1, Darwin's
Proposition would indicate that the ratio of the drift volume, Vd, to the compound body
volume, (1 + E)V is given by the added mass coe�cient of the compound body, C

0
m=a/b. In

this case, the drift volume is given by

Vd �
�w=2
ÿw=2

zddx � C
0
mV
0 � a

b
�1� E�V � pa2: �13�

Consequently, the drift volume, Vd=pa2, depends to leading order neither on the channel
width nor on the detailed shape of the compound body, but only on the cross-sectional area of
the compound body presented to the ¯ow.

The total ¯uid, Vt, transported by the bubble across a given material surface is given by the
sum of the primary wake, Vp, and drift volumes:

Vt � Vp � Vd � C
0
m�1� E�V � EV : �14�

The fact that Vt is generally signi®cantly greater than the bubble volume V indicates that the
high Re motion of bubbles with wakes may be an extremely e�cient ¯uid transport mechanism.
For example, Vt=7.6V in the special case of a two-dimensional circular cap bubble (C

0
m=1,

E = 3.3).
The re¯ux volume, necessitated by global continuity, must be equal to the sum of the bubble,

primary wake and drift volumes:

Vr �
�w=2
ÿw=2

zrdx � ÿ�1� C
0
m��1� E�V : �15�

Equation [8] indicates that, at su�cient distances from the lower boundary, the re¯ux will be
uniformly distributed across the channel width; consequently, the re¯ux amplitude is given by

zr � ÿ �1� C
0
m��1� E�V
w

, �16�

which again depends explicitly on the channel width w.

3.4. Fluid trajectories

The trajectory of a ¯uid parcel initially located at a point (x(0), z(0)) is calculated by integrat-
ing the disturbance velocity associated with the translating elliptical body:

x�t� � �x�t�,z�t�� � �x�0�,z�0�� �
��t

0

uxdt,

�t
0

uzdt

�
: �17�

The trajectory of a ¯uid parcel depends on its initial position (x(0), z(0)). For the case of a
bubble approaching from in®nitely far away, z(0)±z041, all particle trajectories must be fore±
aft symmetric, and no net horizontal displacement may occur (refer to ®gure 8). A ¯uid parcel
near the point of crossing, x(0)<a, will be pushed ahead of the approaching-bubble, then swept
around the bubble and into the downstream region, thus being displaced substantially in a hori-
zontal direction and su�ering a large net vertical displacement (corresponding to drift). The
®nal trajectory thus assumes a looping form. The amount of horizontal displacement decreases
as x(0) increases. A ¯uid parcel initially far from the point of crossing, x(0)>>a, su�ers a net
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negative vertical displacement (corresponding to re¯ux), and executes a curved trajectory whose
curvature decreases with increasing x(0).

4 . EXPERIMENTS

Figure 4 is a schematic diagram of the experimental apparatus. Two 12 mm thick glass plates
were clamped together, and separated at their edges by a 2.5 mm thick margin of rubber spacer.
The channel width w was varied by adjusting the horizontal placement of the side-wall spacers.
The channel was mounted on a frame, and could be oriented at an arbitrary angle y relative to
the horizontal. Air bubbles were introduced manually with a syringe at the base of the channel.
The bubble-induced ¯uid motion was visualized by one of two techniques, either particle track-
ing of a homogeneous suspending ¯uid, or digital tracking of the interface between two distinct
¯uids of comparable density.

4.1. Experimental method

In order to resolve the ¯ow ®eld through particle tracking, the channel was ®lled with a dilute
saltwater solution seeded with neutrally buoyant white plyolite particles (of diameter 200±
300 mm and density 1033 kg/m3), which were clearly visible against the lower plate of black
glass. The ¯ow induced by the bubble motion was recorded on video, and the particle trajec-
tories were deduced using the DigImage image processing system (Dalziel 1992). While the par-
ticle tracking adequately resolved the re¯ux associated with the bubble motion, the rapid
motions in the primary wake and those associated with the drift of material forward were not
as readily resolved. Consequently, interface tracking rather than particle tracking was used in
order to calculate drift volumes.

The second method employed for observing the distortion of a material surface was to set up
a ¯uid±¯uid interface stabilized by a small density di�erence. For this purpose, the upper ¯uid
was pure distilled water, while the lower was a dilute milk±water solution (20% milk,
r = 1.003 g/cc). Over the timescale of the experiments, typically two seconds, both di�usion of
the milk±water interface and convection associated with the small density di�erence of the two
¯uids were negligible, so that the interface behaved like a material surface. Moreover, the pre-

Figure 4. A schematic illustration of the apparatus used in the experimental study. Air bubbles were
injected into a thin (2.5 mm) layer of aqueous solution bound between glass plates. The channel could

pivot about a horizontal axis, and so be oriented at an arbitrary angle y relative to the horizontal.
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sence of surfactants in the milk did not bring about an appreciable change in shape as the
bubble passed through the interface.

Images of the interface were captured before injection, after injection, and after the bubble
had passed through the interface a distance comparable to the channel width. By this time,
the contribution to the ¯uid displacement by the potential ¯ow is complete, and the sub-
sequent weak distortion is that associated with the secondary wake. The form of the distor-
tion of the interface associated with the injection and translation phases could be observed by
superposing the three images. The images captured after injection and translation were super-
posed, and the volumes associated with the bubble, the primary wake, the drift and the re¯ux
were colour coded (refer to ®gure 5) and calculated digitally by pixel-counting. As a check on
the accuracy, we computed the ratio of the volumes displaced forward C+ D + E and back-
ward A. Any violation of continuity indicated that turbulence was mixing the milkwater sol-
ution with the water, thereby bringing about an apparent increase in the volume of the
milkwater solution.

The advantage of interface tracking over particle tracking was the ease with which the pri-
mary wake and drift pro®les were resolved. It was also straightforward to discern when turbu-
lence was present in the wake of the bubble. When turbulence was observed in the wake, not
only was the continuity of milk solution apparently violated by mixing processes, but it was vir-
tually impossible to distinguish between the primary wake and drift volumes. Experiments
marked by turbulent ¯ow are not reported.

4.2. Observations

4.2.1. Bubble shapes. Figure 6 illustrates qualitatively the dependence of the bubble shape and
stability on the bubble Reynolds number and Eotvos number, observed in our experiments, for
air bubbles rising through distilled water. The progression of shapes with increasing bubble
volume is similar to that reported by Siekmann et al. (1974). Bubble forms include stable circu-
lar bubbles, wobbling oblate ellipses (characterized by periodic vortex shedding in their wakes),
unstable oblate ellipses, stable circular caps, and unstable circular caps. We focus on the par-
ameter regime in which stable bubbles and accompanying stable wakes obtain; speci®cally,
stable elliptical caps and stable oblate ellipses. In these cases, the compound body comprised of
bubble plus wake was roughly elliptical, in accordance with the observations of Collins (1965a)
and Lazarek and Littman (1974).
4.2.2. Adjustment phase. In ®gure 7, we present a series of photographs depicting the adjust-

ment phase which follows a volume of air being injected at the lower boundary. The initial
volume of injected air is roughly circular, but adjusts to a circular cap shape over a distance of

Figure 5. Post-processed images illustrating the distortion of an originally horizontal milk±water inter-
face by the motion of (a) a circular cap bubble, and (b) an oblate elliptical bubble. The bubbles are
denoted by (E) and their primary wakes by (D). In each case, the areas between the original and ®nal
interface locations yield the drift volume (B + C) and the re¯ux volume (A + B). The images span the

full channel width.
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Figure 6. The observed shape and form of motion of air bubbles rising through a thin gap of water,
where the gap thickness was 0.25 cm and the inclination angle y= 158. The Reynolds and Eotvos num-
bers, respectively, Re= Ur/n and S = rr2gsiny/s are based on the undeformed bubble radius r. For
certain parameter ranges the bubbles were unstable and broke. In others, the bubble motion was
unsteady, and characterized by either periodic or aperiodic oscillations. The parameter regime of inter-
est in our study of ¯uid transport is that characterized by the steady rectilinear motion of stable

bubbles.

Figure 7. A sequence of photographs of an initially nearly circular air bubble injected at the lower
boundary rising towards a milk±water interface and adjusting to a circular cap form. The time between
consecutive photographs is 1/3 seconds. The adjustment process is characterized by the deformation of
the bubble to a steady shape and its acceleration to a steady rise speed, and is complete after the bubble
has risen a distance comparable to 4a, where a is the half-width of the bubble in its ®nal form. Note
that the bubble width increases during the adjustment process. Only a fraction of the channel width is

shown.
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approximately four bubble radii. The adjustment sequence is qualitatively similar to that
observed by Walters and Davidson (1962) for initially circular air bubbles released in a narrow
gap of water. After the adjustment phase, the bubble achieves a steady rise speed U00.42(ag
siny)1/2 whose dependence on the ratio of the bubble width to channel width was found to be
consistent with the experimental observations and theoretical predictions of Collins (1965b).
4.2.3. Particle trajectories. Figure 8 is an example of the data obtained from particle tracking,

and illustrates the displacement of particles by the ¯ow accompanying a rising bubble. In the
particle tracking experiments, the entirety of the ¯uid motion was followed, so the contribution
to ¯uid displacement from the secondary wake was evident. For the sake of comparison, we
include the trajectories predicted on the basis of the theory described in Section 3.3. The area
examined in this experiment was more than a channel width from the point of injection. The
particle displacements were observed to be largely independent of z in accordance with theory;
consequently, the approximate form of the distortion of any material surface within the tracked
region may be calculated by collapsing all of the starting points of the observed particle trajec-
tories down onto a single line, denoted in ®gure 8 as z = 0. Figure 8 indicates a roughly uni-
form re¯ux, as well as a typically poorly resolved drift pro®le. Far from the centerline, the
displacement is almost entirely vertical and corresponds roughly to a uniform re¯ux. Close to
the centerline, particles pass close to the stagnation point on the nose of the bubble, and so are
displaced a signi®cant distance forward. The breaking of fore±aft symmetry in the particle tra-
jectories near the centerline was also observed by Weber and Bhaga (1982), and is a manifes-
tation of the presence of the secondary wake trailing the bubble. We note that the in¯uence of
the secondary wake was not as pronounced in the interface tracking experiments, since we there

Figure 8. Observed trajectories of neutrally buoyant plyolite particles suspended in a saltwater solution.
An elliptical cap bubble with half-width a = 3.5 cm was injected and subsequently rose along the cen-
terline (x= 0) of a channel 40 cm in width. The height to width ratio of the compound body was 8/7.
Particles starting within a 40 cm by 40 cm area a distance 30 cm from the lower boundary were tracked.
In processing the data, the initial vertical position of the particles were shifted so that each trajectory
began from a single horizontal line, here denoted by z= 0. For comparison, the trajectories (dashed
lines) predicted to arise as a circular cylinder (with the same width as the bubble) rises along the chan-

nel are included.
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examined the distortion pro®les after the bubble had risen a distance comparable to the channel
width.
4.2.4. Distortion pro®les. Figure 9(a) illustrates the injection-induced distortion pro®les of

three initially horizontal interfaces at di�erent distances from the lower boundary. The theoreti-
cally predicted distortion pro®les are included for comparison. The observations con®rm that
the injection-induced distortion is non-uniform in the vicinity of the lower boundary, but is uni-
form at distances comparable to the channel width. The small discrepancy in amplitude for the
upper two interfaces indicates the typical reading errors in our experiments, which were intro-
duced by the interface not being perpendicular to the channel walls (see Section 4.3). The theory
reported in Section 3.1 assumes that the amplitude of the injection-induced displacement is
much smaller than the initial distance between the point of injection and the interface, and it is
this limitation of the theoretical model which accounts for the marked discrepancy between the
experiments and theory for the lowermost pro®le.

Figure 9(b) illustrates the permanent distortion to three initially horizontal interfaces by the
injection and subsequent translation of a circular cap bubble with a stable primary wake. In ac-
cordance with the potential ¯ow model, the distortion pro®les are characterised by a localized
drift and a distributed uniform re¯ux. The interface shape predicted to exist far from the lower
boundary z>>w, obtained by superposing the unbounded drift pro®le on the appropriate uni-
form re¯ux, is included for the sake of comparison. This far-®eld distortion pro®le approxi-
mately matches the upper two interfaces, both of which are initially at distances greater than
half the channel width from the lower boundary. The lower interface takes a ®nal form which is
markedly di�erent, owing to the proximity of the lower boundary and the complicated time-
dependent nature of the injection and adjustment phases in the laboratory ¯ow. In particular,
the bubble is still adjusting towards its equilibrium shape as it passes through the interface, and
its primary wake has yet to develop fully.

Figure 9. The observed distortion pro®les at three levels associated with the injection and subsequent
translation of a circular cap bubble with a circular compound body of radius 3.8 cm rising in a channel
of width w= 20 cm. The observed (solid) and theoretically predicted (dashed) injection-induced distor-

tions are presented in (a), while the ®nal interface shapes are given in (b).
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4.2.5. Drift volume. Table 1 summarizes the parameter regime explored in our interface track-
ing studies. Within this parameter regime, the bubbles observed were either oblate or elliptical
caps, the primary wake varied in shape such that E varied from 1.5 to 4, rise speeds U varied
between 5.7 and 11.9 cm/s, bubble half-widths a between 0.8 and 8.8 cm, channel widths w
between 12 and 41 cm, and the added mass coe�cient C

0
m=a/b between 0.7 to 1.4. The ¯ow

within the channel was laminar, and we ensured that criterion [5] was satis®ed everywhere, so
that viscous interaction with the channel walls did not signi®cantly impact the ¯ow.

Figure 10 illustrates the dependence of the ratio of the drift volume to pa2 on the normalized
distance z/a from the point of injection (the lower boundary) to the material surface (milk±
water interface). According to the potential ¯ow description, [13], this ratio should approach
unity at su�cient distance from the lower boundary. For z/a>0.4, the observed drift volumes
are in accord with the potential ¯ow model, which predicts that the drift volume depends only
on the width of the rising compound body. The errors in the reported drift volumes are dis-
cussed in Section 4.3. For z/a<0.4, the inviscid ¯ow model overpredicts the drift volume. This
discrepancy is associated with the fact that the bubble is still adjusting, and its wake developing,
as it passes through the interface; consequently, the radius of the compound body as it passes
through the interface is signi®cantly less than that measured once a steady state has been estab-
lished.

4.3. Discussion of errors

In our experimental study, we were constrained to consider a limited range of Reynolds num-
bers. Below a critical value, de®ned by [5], the in¯uence of the channel walls became signi®cant

Table 1. The parameter regime examined in the experimental study

y Re Re(d/a)2 2a/w w/2z a/z E C
0
m

108±158 1000±6500 11±54 0.1±0.6 0.4±2.2 0.1±0.65 1.5±4 0.7±1.4

Figure 10. The variation of measured drift volumes with distance between the point of injection and
the material surface considered. + denote circular cap bubbles, and q oblate elliptical bubbles. The
dashed line corresponds to the result anticipated in an unbounded channel on the basis of inviscid ¯ow
theory, namely, that the ratio of the drift to compound body volumes should be precisely equal to the

added mass coe�cient of the compound body.
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so that the bulk ¯ow within the channel could not be adequately described by two-dimensional
inviscid ¯ow theory. Above a critical value, boundary layer instability gave rise to turbulent
¯ow within the channel. For a bubble of a given volume, the desired high Reynolds number
laminar ¯ow could be achieved only in a limited range of tank inclinations. For the bubble sizes
considered in our study, 1 cm<a<5 cm, it was necessary to operate in the regime 108<y<158.
Such low inclination angles introduced a number of three-dimensional ¯ow e�ects which were
the principal sources of error in our experiments.

The principal di�culty associated with the particle tracking arose from the particle-wall inter-
actions. This was particularly evident upstream of the bubble, where particles occasionally stuck
to the glass walls, and were only dislodged by direct collision with the bubble. This problem
could not be eliminated entirely, but was alleviated by ensuring that the particles were neutrally
buoyant. The shallow inclination angles also prevented the ¯ow from being symmetric about the
mid-plane of the channel, so that in the interface tracking experiments, the milk±water interface
was not perpendicular to the channel walls. This leads to an error in identifying the position of
the interface, and in turn to an error of roughly 15% in the reported drift volumes.

Secondary sources of error in the interface studies include the uncertainty in distinguishing
between the primary wake and drift volumes, slight changes in bubble shape as the bubble
crossed the interface, and weak time-dependence of the volume and shape of the primary wake.

Finally, it is worth noting that it was di�cult to determine to what extent the secondary wake
contributed to the observed ¯uid transport. By measuring the distortion pro®les after a ®nite
time (corresponding to the time over which the ¯uid displacement associated with the potential
¯ow is complete), we attempted to minimize the contribution to ¯uid transport made by the sec-
ondary wake. The subsequent distortion, in¯uenced by both the secondary wake and the weak
density change across the interface, was both weak and short-lived, and contributed no more
than an additional 15% to the reported drift volumes.

The presence of impurities in the water may act to rigidify bubble surfaces, thus generating
vorticity at the bubble surface (Hartunian and Sears 1957) and so intensifying the secondary
wake. Moreover, the detailed boundary layer structure may be quite complex in this thin-gap
geometry owing to the interaction between the bubble surface and the channel walls. In particu-
lar, Bush (1997) has identi®ed an unusual wake structure accompanying bubble motion in a thin
gap at low gap Reynolds numbers which is associated with the mechanical redistribution of sur-
factant material by the rolling bubble surface.

5 . MIXING BY BUBBLES

On the basis of our physical picture of the irrotational ¯uid displacement accompanying indi-
vidual bubbles, we proceed by describing a simple heuristic model of mixing by an assemblage
of high Re bubbles. The model is simpli®ed in that the ¯uid transport in the secondary wake is
neglected, and bubble±bubble interactions are assumed to be negligible. This model of bubble-
induced mixing represents a straightforward application of the more general model of mixing by
obstacles in potential ¯ow developed by Eames and Bush (1998).

Consider a tank of ¯uid which initially consists of two superposed layers of ¯uid, the upper
layer being clear and the lower layer dyed. Bubbles are released continuously from inlets distrib-
uted along the lower boundary. We are concerned with describing the evolution of the interface
which is disrupted by the rising bubbles. We assume that the bubble motion has the form
described in this paper: bubbles of volume V rise at a uniform speed U accompanied by stable
primary wakes of volume EV, and drift volumes Cm

0V(1 + E). As the bubbles pass through the
interface, the ¯uid transport will be characterized by a localized drift near the points of crossing
and a broad re¯ux across the channel width. The volume fraction a of bubbles is assumed to be
su�ciently small that bubble±bubble interactions may be neglected. Individual bubbles are in¯u-
enced only by the re¯ux associated with their neighbours, and so rise at a hindered speed
Uh=U(1ÿ a(1 + E)Cm

0).
The interface will drop relative to the container walls at an average rate �u=aEU in response

to the dyed ¯uid being transported to the surface of the container in the primary wake. In the
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absence of molecular di�usivity, the erosion of the interface may be characterized entirely by a
bubble-induced mechanical dispersion coe�cient DL. On dimensional grounds, we expect DL to
be proportional to the volume fraction of the compound bodies a(1 + E), the bubble rise speed
Uh, and the lengthscale L characteristic of the longitudinal displacement, speci®cally, the center
of mass of the drift volume. A formal treatment demonstrates that the appropriate constant of
proportionality is the added mass coe�cient of the compound body, C

0
m, so that the dispersion

coe�cient may be expressed in general by DL=C
0
m(1 + E)aUhL (Eames and Bush, 1998).

In the neighbourhood of the interface, the horizontally averaged concentration of the lower
¯uid C(z,t) thus satis®es an advection±di�usion equation of the form

@C

@ t
� ÿ�u

@C

@z
�DL

@2C

@z2
�18�

The evolution of the system is thus governed solely by the volume fraction of bubbles a as well
as E and C

0
m, which are uniquely prescribed by the bubble parameters, Re and a. The presence

of a primary wake does not signi®cantly alter the width of the compound body (Bhaga and
Weber, 1981), and so does not e�ect the drift volume. Nonetheless, the primary wake does have
two signi®cant e�ects on the e�ciency of ¯uid transport: ®rstly, it advects ¯uid with the bubble,
thus generating an enhanced re¯ux; secondly, it changes the added mass coe�cient of the com-
pound body, and so promotes heightened longitudinal dispersion.

It is important to realize that in three dimensions, the secondary wake will be more pro-
nounced than in our two-dimensional experiments and will make a signi®cant contribution to
the ¯uid transported by the bubbles. Consequently, our simple model based on the irrotational
component of the ¯ow will underpredict the e�ciency of bubble-induced mixing, and the ex-
pression given for the mechanical dispersion coe�cient represents a lower bound.

6. CONCLUSION

We have presented an experimental study of two-phase ¯ow in which we examined the ¯uid
displacement associated with high Reynolds number bubble motion in a thin gap. We speci®-
cally chose to undertake a two-dimensional experimental study, because the e�ects of drift and
re¯ux are more pronounced in two dimensions. In particular, the drift pro®le drops o� from the
centerline as 1/x3 in two dimensions and as 1/x5 in three dimensions, and the re¯ux amplitude
scales with container width R as 1/R in two dimensions rather than 1/R2 in three. Moreover, the
two-dimensional channel geometry tremendously simpli®ed the ¯ow visualization, and made it
possible to consider the desired parameter regime of large bubbles with stable primary wakes.

The parameter regime considered in the experiments was that characterized by high Reynolds
number laminar ¯ow, in which wall e�ects were negligible to leading order. Nevertheless, vis-
cous e�ects were evident in the experimental study, and contributed to ¯uid transport in the sec-
ondary wake trailing the bubble. The in¯uence of the secondary wake was apparent in the
particle tracking experiments, and was made manifest by fore±aft asymmetry in the particle tra-
jectories. Owing to the damping in¯uence of the channel walls, it was not deemed valuable to
quantify the ¯uid transport in the secondary wake. Consequently, in the interface tracking stu-
dies, the distortion pro®les were measured after the bubble had risen a distance comparable to
the channel width, by which time the potential ¯ow contribution to the ¯uid displacement had
been made. The subsequent distortion, associated with the secondary wake trailing the bubble,
was both weak and short-lived, and did not make a substantial contribution to the net ¯uid
transport.

The experiments were directed towards quantifying the form of the ¯uid displacement associ-
ated with the injection and subsequent translation of single bubbles in a two-dimensional chan-
nel. The two-dimensional inviscid ¯ow model describes to leading order the bubble-induced
distortion of a material surface, as well as the measured drift and re¯ux volumes. The theory
predicts that, within half the channel width of the lower boundary, both the injection-induced
distortion and re¯ux are non-uniform across the channel. While this prediction was con®rmed
by our experimental observations, quantitative agreement between observed and predicted dis-
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tortion pro®les in the vicinity of the lower boundary was not possible owing to the complicated

adjustment process which followed the bubble injection, and the in¯uence of the lower bound-

ary. In general, the drift volume in regions close to the lower boundary was less than that in the

far ®eld, since the cross-sectional area of the bubble increases during the adjustment period.

Quantitative agreement between the theory and experiments was obtained at distances greater

than half the channel width from the point of injection. In this far-®eld region, the drift volume

does not depend on the bounding geometry; moreover, it is not simply related to the bubble

volume, but rather to the cross-sectional area of the compound body presented to the ¯ow. The

drift volume depends on the details of the primary wake only insofar as it may change the

exposed area of the compound body. The ®nal shape of the distortion pro®le does, however,

depend explicitly on the shape of the compound body, with its peak being more pronounced for

more oblate bodies. Furthermore, we have demonstrated that, in the far-®eld, the ¯uid re¯ux is

uniform across the channel width, and has an amplitude which depends critically on the volume

of the primary wake, the drift volume and the channel width.

We have demonstrated that a substantial component of the ¯uid transport associated with

bubbles with stable primary wakes may be deduced by treating the induced ¯ow as potential

¯ow around the compound body composed of bubble plus wake. Although we have focussed on

a two-dimensional geometry, many of our conclusions carry over to the three-dimensional pro-

blem. In three dimensions, stable rectilinear motion of bubbles with or without stable primary

wakes is observed in the range 50<Re<500, which describes air bubbles with diameter 0.1±

1.2 mm rising through water (Clift et al. 1978). As the Reynolds number increases through this

range, bubbles become progressively more oblate (Moore 1965). The added mass coe�cient of

an ellipsoidal body with semi-major and -minor axes of, respectively, a and b is given exactly by

Cm � a0
2ÿ a0

, where a0 � a2b

�1
0

dl

�l� a2�32�l2 � b2�
, �19�

(Lamb 1932), which in the limit of large oblate distortions, a/b>>1, takes the form

Cm0 2

p
a

b
: �20�

In this asymptotic limit, the drift volume Vd � Cm
4
3 pa

2b � 8
3 a

3 is once again uniquely deter-

mined by the cross-sectional area of the bubble. We note that typically Cm may be signi®cantly

di�erent from the value of 0.5 assumed in a number of theoretical models (Kowe et al. 1988).

As in the two-dimensional case, the drift volume is uniquely prescribed by the shape of the com-

pound body, which is in turn prescribed by Re and S. Finally, on the basis of our theoretical

model, it should be straightforward to encorporate the extensive data compiled on the form of

bubbles and wakes in three-dimensions (Clift et al., 1978; Bhaga and Weber 1981) in order to

predict the drift volumes associated with high Reynolds number bubble motion in three dimen-

sions.

It is important to emphasize that the velocity ®eld in the secondary wake trailing a three-

dimensional bubble drops o� much more slowly than the potential ¯ow component with dis-

tance from the bubble; consequently, the transport in the secondary wake may also contribute

substantially to observed drift volumes and thus to re¯ux amplitudes. When Re050, the hydro-

dynamic drag on a spherical air bubble of radius a rising through water is D = 6prnUa; conse-

quently, according to [1], the volume ¯ux in the secondary wake is Q = 6pna far downstream.

When the ¯ow around the bubble separates, so that a primary wake region exists, the drag

increases by a factor of O(Re), as must the associated volume ¯ux in the far-®eld secondary

wake. Consequently, while the presence of the primary wake does not signi®cantly alter the con-

tribution to the ¯uid displacement made by the potential ¯ow (drift) component, it does indicate

that the contribution from the secondary wake will be more signi®cant. The importance of the

transport in the secondary wake, and its dependence on the form of the translating body (either

a bubble, a ¯uid drop or a rigid particle) and on the bounding geometry, will be the subject of

future research.
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